
trepan Documentation
Release 1.0

Rocky Bernstein

Sep 30, 2021

Contents

1 Features 3
1.1 Exact location information . 3
1.2 Debugging Python bytecode (no source available) . 3
1.3 Source-code Syntax Colorization . 3
1.4 Command Completion . 4
1.5 Terminal Handling . 4
1.6 Smart Eval . 4
1.7 More Stepping Control . 4
1.8 Event Tracing of Calls and Returns . 5
1.9 Debugger Macros via Python Lambda expressions . 5
1.10 Byte-code Instruction Introspection . 5
1.11 Debugger Command Arguments can be Variables and Expressions 5
1.12 Out-of-Process Debugging . 6
1.13 Egg, Wheel, and Tarballs . 6
1.14 Modularity . 6
1.15 Documentation . 6

2 How to install 7
2.1 Using pip . 7
2.2 Using easy_install . 7

3 Entering the Trepan Debugger 9
3.1 Invoking the Debugger Initially . 9
3.2 Calling the debugger from IPython . 10
3.3 Calling the debugger from an Interactive Python Shell . 11
3.4 Calling the debugger from your program . 12
3.5 Calling the debugger from pytest . 12
3.6 Set up an exception handler to enter the debugger on a signal . 13
3.7 Set up an exception handler allow remote connections . 13
3.8 Startup Profile . 15

4 Command Syntax 17
4.1 Syntax for Address Ranges . 17
4.2 Debugger Command Syntax . 17
4.3 Command examples . 18
4.4 Syntax for Indicating a Filename . 18
4.5 Syntax for List Ranges . 19

i

4.6 Command suffixes which have special meaning . 19

5 Trepan Command Reference 21
5.1 Breakpoints . 21
5.2 Data . 24
5.3 Files . 28
5.4 Info . 29
5.5 Running . 34
5.6 Set . 38
5.7 Stack . 45
5.8 Show . 46
5.9 Support . 50

6 Manual Pages 55
6.1 trepan2 - Python2 debugger . 55
6.2 trepan2c (Python2 client to connect to remote trepan session) . 56

7 Indices and tables 57

Index 59

ii

trepan Documentation, Release 1.0

trepan2 is a gdb-like debugger for Python. It is a rewrite of pdb from the ground up.

A command-line interface (CLI) is provided as well as an remote access interface over TCP/IP.

See ipython-trepan for using this in ipython or an ipython notebook.

This package is for Python 2.6 and 2.7. See trepan3k for the same code modified to work with Python 3. For Python
before 2.6, use pydbgr .

An Emacs interface is available via realgud.

• Features

– Exact location information

– Debugging Python bytecode (no source available)

– Source-code Syntax Colorization

– Command Completion

– Terminal Handling

– Smart Eval

– More Stepping Control

* Step Granularity

* Event Filtering and Tracing

– Event Tracing of Calls and Returns

– Debugger Macros via Python Lambda expressions

– Byte-code Instruction Introspection

– Debugger Command Arguments can be Variables and Expressions

– Out-of-Process Debugging

– Egg, Wheel, and Tarballs

– Modularity

– Documentation

Contents 1

https://github.com/rocky/ipython-trepan
https://pypi.python.org/pypi/trepan3k
https://pypi.python.org/pypi/pydbgr
https://github.com/realgud/realgud

trepan Documentation, Release 1.0

2 Contents

CHAPTER 1

Features

Since this debugger is similar to other trepanning debuggers and gdb in general, knowledge gained by learning this is
transferable to those debuggers and vice versa.

There’s a lot of cool stuff here that’s not in the stock Python debugger pdb.

1.1 Exact location information

Python reports line information on the granularity of a line. To get more precise information, we can (de)parse into
Python the byte code around a bytecode offset such as the place you are stopped at.

So far as I know, there is no other debugger that can do this.

1.2 Debugging Python bytecode (no source available)

You can pass the debugger the name of Pytnon bytecode and many times, the debugger will merrily proceed. This
debugger tries very hard find the source code. Either by using the current executable search path (e.g. PATH) or for
some by looking inside the bytecode for a filename in the main code object (co_filename) and applying that with a
search path which takes into account directory where the bytecode lives.

Failing to find source code this way, and in other situations where source code can’t be found, the debugger will
decompile the bytecode and use that for showing source test.

But if you happen to know where the source code is located, you can associate a file source code with the current name
listed in the bytecode. See the set_substitute command for details here.

1.3 Source-code Syntax Colorization

Starting with release 0.2.0, terminal source code is colorized via pygments . And with that you can set the pygments
color style, e.g. “colorful”, “paraiso-dark”. See set_style . Furthermore, we make use of terminal bold and emphasized

3

https://www.npmjs.com/package/trepanjs
https://rubygems.org/gems/trepanning
https://metacpan.org/pod/Devel::Trepan
https://python2-trepan.readthedocs.org/en/latest/commands/set/substitute.html
http://pygments.org
https://python2-trepan.readthedocs.org/en/latest/commands/set/style.html

trepan Documentation, Release 1.0

text in debugger output and help text. Of course, you can also turn this off. Starting with release 0.6.0, you can use
your own pygments_style, provided you have a terminal that supports 256 colors. If your terminal supports the basic
ANSI color sequences only, we support that too in both dark and light themes.

1.4 Command Completion

Starting with release 2.8, readline command completion has been added. Command completion is not just a simple
static list, but varies depending on the context. For example, for frame-changing commands which take optional
numbers, on the list of valid numbers is considered.

1.5 Terminal Handling

We can adjust debugger output depending on the line width of your terminal. If it changes, or you want to adjust it,
see set_width .

1.6 Smart Eval

Starting with release 0.2.0, if you want to evaluate the current source line before it is run in the code, use eval.
To evaluate text of a common fragment of line, such as the expression part of an if statement, you can do that with
eval?. See eval for more information.

1.7 More Stepping Control

Sometimes you want small steps, and sometimes large stepping.

This fundamental issue is handled in a couple ways:

1.7.1 Step Granularity

There are now step event and next event commands with aliases to s+, s> and so on. The plus-suffixed commands
force a different line on a subsequent stop, the dash-suffixed commands don’t. Suffixes >, <, and ! specify call,
return and exception events respectively. And without a suffix you get the default; this is set by the set different
command.

1.7.2 Event Filtering and Tracing

By default the debugger stops at every event: call, return, line, exception, c-call, c-exception. If
you just want to stop at line events (which is largely what you happens in pdb) you can. If however you just want to
stop at calls and returns, that’s possible too. Or pick some combination.

In conjunction with handling all events by default, the event status is shown when stopped. The reason for stopping is
also available via info program.

4 Chapter 1. Features

http://pygments.org/docs/styles/
https://python2-trepan.readthedocs.org/en/latest/commands/set/width.html
https://python2-trepan.readthedocs.org/en/latest/commands/data/eval.html

trepan Documentation, Release 1.0

1.8 Event Tracing of Calls and Returns

I’m not sure why this was not done before. Probably because of the lack of the ability to set and move by different
granularities, tracing calls and returns lead to too many uninteresting stops (such as at the same place you just were
at). Also, stopping on function definitions probably also added to this tedium.

Because we’re really handling return events, we can show you the return value. (pdb has an “undocumented” retval
command that doesn’t seem to work.)

1.9 Debugger Macros via Python Lambda expressions

Starting with release 0.2.3, there are debugger macros. In gdb, there is a macro debugger command to extend debugger
commands.

However Python has its own rich programming language so it seems silly to recreate the macro language that is in
gdb. Simpler and more powerful is just to use Python here. A debugger macro here is just a lambda expression which
returns a string or a list of strings. Each string returned should be a debugger command.

We also have aliases for the extremely simple situation where you want to give an alias to an existing debugger
command. But beware: some commands, like step inspect command suffixes and change their behavior accordingly.

We also envision a number of other ways to allow extension of this debugger either through additional modules, or
user-supplied debugger command directories.

If what you were looking for in macros was more front-end control over the debugger, then consider using the experi-
mental (and not finished) Bullwinkle protocol.

1.10 Byte-code Instruction Introspection

We do more in the way of looking at the byte codes to give better information. Through this we can provide:

• a skip command. It is like the jump command, but you don’t have to deal with line numbers.

• disassembly of code fragments. You can now disassemble relative to the stack frames you are currently stopped
at.

• Better interpretation of where you are when inside execfile or exec. (But really though this is probably a Python
compiler misfeature.)

• Check that breakpoints are set only where they make sense.

• A more accurate determination of if you are at a function-defining def statement (because the caller instruction
contains MAKE_FUNCTION.)

Even without “deparsing” mentioned above, the abilty to disassemble by line number range or byte-offset range lets
you tell exactly where you are and code is getting run.

1.11 Debugger Command Arguments can be Variables and Expres-
sions

Commands that take integer arguments like up, list or disassemble allow you to use a Python expression which may
include local or global variables that evaluates to an integer. This eliminates the need in gdb for special “dollar”
debugger variables. (Note however because of shlex parsing ,expressions can’t have embedded blanks.)

1.8. Event Tracing of Calls and Returns 5

https://python2-trepan.readthedocs.org/en/latest/commands/running/step.html

trepan Documentation, Release 1.0

1.12 Out-of-Process Debugging

You can now debug your program in a different process or even a different computer on a different network!

1.13 Egg, Wheel, and Tarballs

Can be installed via the usual pip or easy_install. There is a source tarball. How To Install has full instructions and
installing from git and by other means.

1.14 Modularity

The Debugger plays nice with other trace hooks. You can have several debugger objects.

Many of the things listed below doesn’t directly effect end-users, but it does eventually by way of more robust and
featureful code. And keeping developers happy is a good thing.(TM)

• Commands and subcommands are individual classes now, not methods in a class. This means they now have
properties like the context in which they can be run, minimum abbreviation name or alias names. To add a new
command you basically add a file in a directory.

• I/O is it’s own layer. This simplifies interactive readline behavior from reading commands over a TCP socket.

• An interface is it’s own layer. Local debugging, remote debugging, running debugger commands from a file
(source) are different interfaces. This means, for example, that we are able to give better error reporting if a
debugger command file has an error.

• There is an experimental Python-friendly interface for front-ends

• more testable. Much more unit and functional tests. More of pydb’s integration test will eventually be added.

1.15 Documentation

Documentation: http://python2-trepan.readthedocs.org

6 Chapter 1. Features

https://python2-trepan.readthedocs.io/en/latest/install.html
http://python2-trepan.readthedocs.org

CHAPTER 2

How to install

2.1 Using pip

If you are using pyenv or don’t need special root access to install:

$ pip install trepan2 # or trepan3k for Python 3.x

If you need root access you may insert sudo in front or become root:

$ sudo pip install trepan2

or:

$ su root
pip install trepan

2.2 Using easy_install

Basically the same as using pip, but change “pip install” to “easy_install”:

$ easy_install trepan # or trepan3k

$ git clone https://github.com/rocky/python2-trepan.git
$ cd python-trepan
$ make check-short # to run tests
$ make install # if pythonbrew or you don't need root access
$ sudo make install # if pythonbrew or you do need root access

Above I used GNU “make” to run and install. However this just calls python setup.py to do the right thing. So if you
are more familiar with setup.py you can use that directly. For example:

7

https://github.com/yyuu/pyenv

trepan Documentation, Release 1.0

$./setup.py test
$./setup.py install

8 Chapter 2. How to install

CHAPTER 3

Entering the Trepan Debugger

Contents

• Entering the Trepan Debugger

– Invoking the Debugger Initially

– Calling the debugger from IPython

* Installing the IPython extension

* Trepan IPython Magic Functions

· Example

– Calling the debugger from an Interactive Python Shell

– Calling the debugger from your program

– Calling the debugger from pytest

– Set up an exception handler to enter the debugger on a signal

– Set up an exception handler allow remote connections

– Startup Profile

3.1 Invoking the Debugger Initially

The simplest way to debug your program is to call run trepan2 (or trepan3k for Python 3). Give the name of your
program and its options and any debugger options:

$ cat test.py
print('Hello, World!')

(continues on next page)

9

trepan Documentation, Release 1.0

(continued from previous page)

$ trepan2 test.py # or trepan3k test.py

For help on trepan2’s or trepan3k’s options, use the --help option.

$ trepan2 --help
Usage: trepan2 [debugger-options] [python-script [script-options...]]
...

To separate options to the program you want to debug from trepan2’s options put – after the debugger’s options:

$ trepan2 --trace -- test.py --test-option1 b c

If you have previously set up remote debugging using trepan2 --server, you’ll want to run the client version of
trepan2 which is a separate program trepan2c.

3.2 Calling the debugger from IPython

3.2.1 Installing the IPython extension

Use the trepan IPython extension.

To install execute the the following code snippet in an IPython shell or IPython notebook cell:

or put trepanmagic.py in $HOME/.python/profile_default/startup:

cd `$HOME/.python/profile_default/startup`:
wget https://raw.github.com/rocky/ipython-trepan/master/trepanmagic.py

3.2.2 Trepan IPython Magic Functions

After installing the trepan extension, the following IPython magic functions are added:

• %trepan_eval evaluate a Python statement under the debugger

• %trepan run the debugger on a Python program

• %trepan_pm do post-mortem debugging

Example

$ ipython
Python 2.7.8 (default, Apr 6 2015, 16:25:30)
...

In [1]: %load_ext trepanmagic
trepanmagic.py loaded
In [2]: import os.path
In [3]: %trepan_eval(os.path.join('foo', 'bar'))
(/tmp/eval_stringS9ST2e.py:1 remapped <string>): <module>
-> 1 (os.path.join('foo', 'bar'))
(trepan2) s

(continues on next page)

10 Chapter 3. Entering the Trepan Debugger

https://github.com/rocky/ipython-trepan

trepan Documentation, Release 1.0

(continued from previous page)

(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:68): join
-> 68 def join(a, *p):
(trepan2) s
(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:73): join
-- 73 path = a
(trepan2) c
Out[3]: 'foo/bar'
In [4]:

See also the examples directory.

3.3 Calling the debugger from an Interactive Python Shell

Note: by “interactive python shell” I mean running “python” or “python -i” and this is distinct from going into
IPython which was covered in the last section.

Put these lines in a file:

import inspect
from trepan.api import run_eval
def debug(str):
frame = inspect.currentframe()
return run_eval(str, globals_=frame.f_globals, locals_=frame.f_locals)

print(".pythonrc.py loaded") # customize or remove this

A copy of the above can be found here. I usually put these line in $HOME/.pythonrc.py. Set the environment variable
PYTHONSTARTUP to $HOME/.pythonrc.py.

After doing this, when you run python -i you should see on entry the print message from the file. For example:

$ python -i
Python ...
Type "help", "copyright", "credits" or "license" for more information.
.pythonrc.py loaded
>>>

If you see the above “.pythonrc.py” message, great! If not, it might be that PYTHONSTARTUP is not defined. Here
run:

and you should see the “.pythonrc.py” message as shown above.

Once that code is loaded, the debug() function is defined. To debug some python code, you can call that function. Here
is an example:

>>> import os.path
>>> debug('os.path.join("a", "b")')
(/tmp/eval_stringBMzXCQ.py:1 remapped <string>): <module>
-> 1 os.path.join("a", "b")
(trepan2) step
(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:68): join
-> 68 def join(a, *p):
(trepan2) continue
'a/b'
>>>

3.3. Calling the debugger from an Interactive Python Shell 11

https://github.com/rocky/ipython-trepan/tree/master/examples
https://github.com/rocky/python2-trepan/blob/master/PYTHONSTARTUP/pythonrc

trepan Documentation, Release 1.0

Note in the above, we pass to the debug() function a string. That is, we pass ‘os.path.join(“a”, “b”)’, not
os.path.join(“a”, “b”) which would have the effect of running the code to be evaluated first before calling debug().
This is not an error, but debugging evaluating a string, is probably not what you want to do.

To do: add and document run_call()

3.4 Calling the debugger from your program

Sometimes it is not feasible to invoke the program from the debugger. Although the debugger tries to set things up
to make it look like your program is called, sometimes the differences matter. Also the debugger adds overhead and
slows down your program.

Another possibility then is to add statements into your program to call the debugger at the spot in the program you
want. To do this, import trepan.api and make a call to trepan.api.debug(). For example:

Code run here trepan2/trepan3k doesn't even see at all.
...
from trepan.api import debug
trepan is accessible but inactive.
work, work, work...
debug() # Get thee to thyne debugger!

Since debug() is a function, call it can be nested inside some sort of conditional statement allowing one to be very
precise about the conditions you want to debug under. And until first call to debug(), there is no debugger overhead.

debug() causes the statement after the call to be stopped at. Sometimes though there is no after statement. In this case,
adding the named parameter step_ignore=0 will cause the debugger to be entered inside the debug() call:

...
def foo():

some code
debug(step_ignore=0) # Stop before even returning from the debug() call

foo() # Note there's no statement following foo()

If you want a startup profile to get run, you can pass a list of file names in option start_opts. For example, let’s say
I want to set the formatting style and automatic source code listing in by debugger session. I would put the trepan
debugger commands in a file, say /home/rocky/trepan-startup, and then list that file like this:

debug(start_opts={'startup-profile': ["/home/rocky/trepan-startup"]})

See Startup Profile for a sample profile.

3.5 Calling the debugger from pytest

Install pytest-trepan:

pip install pytest-trepan

After installing, to set a breakpoint to enter the trepan debugger:

import pytest
def test_function():

...
pytest.trepan() # get thee to thyne debugger!

(continues on next page)

12 Chapter 3. Entering the Trepan Debugger

https://pypi.python.org/pypi/pytest-trepan

trepan Documentation, Release 1.0

(continued from previous page)

x = 1
...

The above will look like it is stopped at the pytest.trepan() call. This is most useful when this is the last statement of a
scope. If you want to stop instead before x = 1 pass immediate=False or just False:

import pytest
def test_function():

...
pytest.trepan(immediate=False)
same as py.trepan(False)
x = 1
...

You can also pass as keyword arguments any parameter accepted by trepan.api.debug().

To have the debugger entered on error, use the --trepan option:

$ py.test --trepan ...

3.6 Set up an exception handler to enter the debugger on a signal

This is really just a variation of one of the other methods. To install and call the debugger on signal USR1:

import signal
def signal_handler(num, f):
from trepan.api import debug; debug()
return

signal.signal(signal.SIGUSR1, signal_handler)
Go about your business...

However, if you have entered the debugger either by running intially or previously via a debug() call, trepan has already
set up such default handlers for many of the popular signals, like SIGINT. To see what trepan2 has installed use the
info signals command:

(trepan2) info signals INT
Signal Stop Print Stack Pass Description
SIGINT Yes Yes No No Interrupt

(trepan2) info signals
Signal Stop Print Stack Pass Description

SIGHUP Yes Yes No No Hangup
SIGSYS Yes Yes No No Bad system call
...

Commonly occuring signals like CHILD and unmaskable signals like KILL are not intercepted.

3.7 Set up an exception handler allow remote connections

The extends the example before to set to allow remote debugging when the process gets a USR1 signal

3.6. Set up an exception handler to enter the debugger on a signal 13

trepan Documentation, Release 1.0

import signal

def signal_handler(num, f):
from trepan.interfaces import server as Mserver
from trepan.api import debug
connection_opts={'IO': 'TCP', 'PORT': 1955}
intf = Mserver.ServerInterface(connection_opts=connection_opts)
dbg_opts = {'interface': intf}
print('Starting TCP server listening on port 1955.')
debug(dbg_opts=dbg_opts)
return

signal.signal(signal.SIGUSR1, signal_handler)
Go about your business...

import time
import os
print(os.getpid())
for i in range(10000):

time.sleep(0.2)

Now run that:

$ python /tmp/foo.py
8530

From above output we helpfully listed the pid of the Python process we want to debug.

Now in a shell we send the signal to go into the debugger listening for commands on port 1955. You will have to
adjust the process id.

$ kill -USR1 8530 # Adjust the pid to what you see above

And in the shell where we ran /tmp/foo.py you should now see the new output:

$ python /tmp/foo.py
8530
Starting TCP server listening on port 1955. # This is new

Back to the shell where we issued the kill -USR1 we can now attach to the debugger on port 1955:

$ trepan2 --client --port 1955
Connected.
(/tmp/foo.py:11 @101): signal_handler
-- 11 return
(trepan2*) backtrace
6 connection_opts={'IO': 'TCP', 'PORT': 1955}
7 intf = Mserver.ServerInterface(connection_opts=connection_opts)
8 dbg_opts = {'interface': intf}
9 print('Starting TCP server listening on port 1955.')

10 debug(dbg_opts=dbg_opts)
11 -> return
12
13 signal.signal(signal.SIGUSR1, signal_handler)
14 # Go about your business...

(trepan2*) list
-> 0 signal_handler(num=10, f=<frame object at 0x7f9036796050>)

(continues on next page)

14 Chapter 3. Entering the Trepan Debugger

trepan Documentation, Release 1.0

(continued from previous page)

called from file '/tmp/foo.py' at line 11
1 <module> file '/tmp/foo.py' at line 20

3.8 Startup Profile

A startup profile is a text file that contains debugger commands. For example it might look like this:

$ cat ~/.config/trepanpy/profile/alternate-profile.py
set autolist
set different on
set autoeval on
set style colorful
Note that the below is a debugger command, not a Python command
print "My trepan startup file loaded"
$

By default, the file $HOME/.config/trepanpy/profile/profile.py is loaded, and that a file exists trepan2 starts up. To
change this default behavior and not have the default profile loaded, use the option -n, or –nx in the trepan2 invocation.

3.8. Startup Profile 15

trepan Documentation, Release 1.0

16 Chapter 3. Entering the Trepan Debugger

CHAPTER 4

Command Syntax

4.1 Syntax for Address Ranges

Address ranges are used in the disassemble command. It is like a range but we allow addresses. An add

An address range is in one of the following forms:

location # starting line only
first, last # starting and ending line
, last # ending line only

A location is described elsewhere. first and last can also be linespecs but they also may be a number or address
(bytecode offset). And finally last can be an (line number) offset.

A number is just a decimal number. An offset is a number prefaced with “+” and indicates the number to increment
the line number found in first.

4.1.1 Examples

*5 # start from bytecode offset 5 of current file

*5 , # Same as above.
foo.py:*5 # start from bytecode offset 5 of file foo.py

help syntax location

4.2 Debugger Command Syntax

Command names and arguments are separated with spaces like POSIX shell syntax. Parenthesis around the arguments
and commas between them are not used. If the first non-blank character of a line starts with #, the command is ignored.

17

trepan Documentation, Release 1.0

Commands are split at whereever ;; appears. This process disregards any quotes or other symbols that have meaning
in Python. The strings after the leading command string are put back on a command queue, and there should be white
space around ‘;;’.

Within a single command, tokens are then white-space split. Again, this process disregards quotes or symbols that
have meaning in Python. Some commands like eval, macro, and break have access to the untokenized string entered
and make use of that rather than the tokenized list.

Resolving a command name involves possibly 4 steps. Some steps may be omitted depending on early success or
some debugger settings:

1. The leading token is first looked up in the macro table. If it is in the table, the expansion is replaces the current
command and possibly other commands pushed onto a command queue. Run help macros for help on how to define
macros, and info macro for current macro definitions.

2. The leading token is next looked up in the debugger alias table and the name may be substituted there. See “help
alias” for how to define aliases, and “show alias” for the current list of aliases.

3. After the above, The leading token is looked up a table of debugger commands. If an exact match is found, the
command name and arguments are dispatched to that command.

4. If after all of the above, we still don’t find a command, the line may be evaluated as a Python statement in the
current context of the program at the point it is stoppped. However this is done only if “auto evaluation” is on. It is on
by default.

If auto eval is not set on, or if running the Python statement produces an error, we display an error message that the
entered string is “undefined”.

If you want python-, ipython- or bpython-like shell command-processing, it’s possible to go into an python shell with
the corresponding command. It is also possible to arrange going into an python shell every time you enter the debugger.

See also:

help syntax suffixes

4.3 Command examples

This line does nothing. It is a comment. Useful in debugger command files.
This line also does nothing.
s # by default, this is an alias for the "step" command
info program;;list # error no command 'program;;list'
info program ;; list # Runs two commands "info program" and "list"

See also:

macro, alias, python, set auto eval, info macro, and the show variants of the above set commands.

4.4 Syntax for Indicating a Filename

4.4.1 Filename Examples:

file.py => file.py
/tmp/file.py => /tmp/file.py
"C:file.py" => C:file.py # For Microsoft OS's
'C:file.py' => same as above

(continues on next page)

18 Chapter 4. Command Syntax

trepan Documentation, Release 1.0

(continued from previous page)

'''C:file.py''' => same as above
'C:\file.py' => C:\file.py # For Microsoft OS's
'\new.py' => \new.py
'my file.py' => 'my file.py'

4.5 Syntax for List Ranges

List ranges are used in the list and disassemble commands.

A list range is in one of the following forms:

location # starting line only first, last # starting and ending line , last # ending line only

A location is described elsewhere. first and last can also be locations but they also may be a number. And finally last
can be a (line number) offset.

A number is just a decimal number. An offset is a number prefaced with “+” and indicates the number to increment
the line number found in first.

4.5.1 Examples

5 # start from line 5 of current file
5 , # Same as above.
, 5 # listsize lines before and up to 5
foo.py:5 # start from line 5 of file foo.py
foo() # start from function foo
os.path:5 # start from line 5 of module os.path
os.path:5 # Same as above.
os.path:5, 6 # list lines 5 and 6 of os.path
os.path:5, +1 # Same as above. +1 is an offset
os.path:5, 1 # Same as above, since 1 < 5.
os.path:5, +6 # lines 5-11
os.path.join() # lines starting with the os.join.path function.
"c:\foo.py":10, # listsize lines starting from line 10 of c:\foo.py
, 'My Doc/foo.py':20 # listsize lines ending at line 20 of file: My Doc/foo.py

See also:

help syntax location

4.6 Command suffixes which have special meaning

Some commands like step, or list do different things when an alias to the command ends in a particular suffix like >.

Here are a list of commands and the special suffixes:

4.5. Syntax for List Ranges 19

trepan Documentation, Release 1.0

command suffix
list >
step +, -, <, >
next +, -, <, >
quit !
kill !
eval ?

See the help on the specific commands listed above for the specific meaning of the suffix.

20 Chapter 4. Command Syntax

CHAPTER 5

Trepan Command Reference

Following gdb, we classify commands into categories. Note though that some commands, like quit, and restart, are in
different categories and some categories are new, like set, show, and info.

5.1 Breakpoints

Making the program stop at certain points

A breakpoint can make your program stop at that point. You can set breakpoints with the break command and its
variants. You can specify the place where your program should stop by file and line number or by function name.

The debugger assigns a number to each breakpoint when you create it; these numbers are successive integers starting
with 1. In many of the commands for controlling various features of breakpoints you use this number. Each breakpoint
may be enabled or disabled; if disabled, it has no effect on your program until you enable it again.

The debugger allows you to set any number of breakpoints at the same place in your program. There is nothing unusual
about this because different breakpoints can have different conditions associated with them.

The simplest sort of breakpoint breaks every time your program reaches a specified place. You can also specify a
condition for a breakpoint. A condition is just a Boolean expression in your programming language. A breakpoint
with a condition evaluates the expression each time your program reaches it, and your program stops only if the
condition is true.

This is the converse of using assertions for program validation; in that situation, you want to stop when the assertion
is violated-that is, when the condition is false.

Break conditions can have side effects, and may even call functions in your program. This can be useful, for example,
to activate functions that log program progress, or to use your own print functions to format special data structures.
The effects are completely predictable unless there is another enabled breakpoint at the same address. (In that case,
pydb might see the other breakpoint first and stop your program without checking the condition of this one.) Note that
breakpoint commands are usually more convenient and flexible than break conditions for the purpose of performing
side effects when a breakpoint is reached.

Break conditions can be specified when a breakpoint is set, by adding a comma in the arguments to the break command.
They can also be changed at any time with the condition command.

21

trepan Documentation, Release 1.0

5.1.1 Break (set a breakpoint)

break [location] [if condition]]

Sets a breakpoint, i.e. stopping point just before the execution of the instruction specified by location.

Without arguments or an empty location, the breakpoint is set at the current stopped location.

See help syntax location for detailed information on a location.

If the word if is given after location, subsequent arguments given Without arguments or an empty location, the break-
point is set the current stopped location.

Normally we only allow stopping at lines that we think are stoppable. If the command has a ! suffix, force the
breakpoint anyway.

Examples:

break # Break where we are current stopped at
break if i < j # Break at current line if i < j
break 10 # Break on line 10 of the file we are

currently stopped at
break! 10 # Break where we are current stopped at, even if

we don't think line 10 is stoppable
break os.path.join() # Break in function os.path.join
break x[i].fn() # break in function specified by x[i].fn
break x[i].fn() if x # break in function specified by x[i].fn

if x is set
break os.path:45 # Break on line 45 file holding module os.path
break myfile.py:2 # Break on line 2 of myfile.py
break myfile.py:2 if i < j # Same as above but only if i < j
break "foo's.py":1" # One way to specify path with a quote
break 'c:\\foo.bat':1 # One way to specify a Windows file name,
break '/My Docs/foo.py':1 # One way to specify path with blanks in it

See also:

info break, tbreak, condition, and help syntax location.

5.1.2 Clear (Remove all breakpoints on a line)

clear [linenumber]

Clear some breakpoints by line number.

See also:

delete

5.1.3 Condition (add condition to breakpoint)

condition bp_number condition

bp_number is a breakpoint number. condition is an expression which must evaluate to True before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

22 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

Examples:

condition 5 x > 10 # Breakpoint 5 now has condition x > 10
condition 5 # Remove above condition

See also:

break, tbreak.

5.1.4 Delete (remove breakpoints)

delete [bpnumber [bpnumber. . .]]

Delete some breakpoints.

Arguments are breakpoint numbers with spaces in between. To delete all breakpoints, give no argument. Without
arguments, clear all breaks (but first ask confirmation).

See also:

clear

5.1.5 Disable (disable breakpoints)

disable bpnumber [bpnumber . . .]

Disables the breakpoints given as a space separated list of breakpoint numbers. See also info break to get a list.

See also:

enable

5.1.6 Enable (enable breakpoints)

enable bpnumber [bpnumber . . .]

Enables the breakpoints given as a space separated list of breakpoint numbers. See also info break to get a list.

See also:

disable, tbreak

5.1.7 Tbreak (temporary breakpoint)

tbreak [location] [if condition]

With a line number argument, set a break there in the current file. With a function name, set a break at first executable
line of that function. Without argument, set a breakpoint at current location. If a second argument is if, subequent
arguments given an expression which must evaluate to true before the breakpoint is honored.

The location line number may be prefixed with a filename or module name and a colon. Files is searched for using
sys.path, and the .py suffix may be omitted in the file name.

5.1. Breakpoints 23

trepan Documentation, Release 1.0

Examples:

tbreak # Break where we are current stopped at
tbreak 10 # Break on line 10 of the file we are currently stopped at
tbreak os.path.join # Break in function os.path.join
tbreak os.path:45 # Break on line 45 of os.path
tbreak myfile.py:45 # Break on line 45 of myfile.py
tbreak myfile:45 # Same as above.

See also:

break.

5.2 Data

Examining data.

5.2.1 Deparse (CPython bytecode deparser)

deparse [options] [.]

Options are:

-p | --parent show parent node
-P | --pretty show pretty output
-A | --tree | --AST show abstract syntax tree (AST)
-o | --offset [num] show deparse of offset NUM
-h | --help give this help

deparse around where the program is currently stopped. If no offset is given, we use the current frame offset. If -p is
given, include parent information.

If an ‘.’ argument is given, deparse the entire function or main program you are in. The -P parameter determines
whether to show the prettified as you would find in source code, or in a form that more closely matches a literal
reading of the bytecode with hidden (often extraneous) instructions added. In some cases this may even result in
invalid Python code.

Output is colorized the same as source listing. Use set highlight plain to turn that off.

Examples:

deparse # deparse current location
deparse --parent # deparse current location enclosing context
deparse . # deparse current function or main
deparse --offset 6 # deparse starting at offset 6
deparse --offsets # show all exect deparsing offsets
deparse --AST # deparse and show AST

See also:

disassemble, list, and set highlight

24 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.2.2 Disassemble (CPython disassembly)

disassemble [thing]

disassemble [address-range]

Disassembles bytecode. See help syntax arange for what can go in an assembly-list range.

Without arguments, print lines starting from where the last list left off since the last entry to the debugger. We start off
at the location indicated by the current stack.

in addition you can also use:

• a ‘.’ for the location of the current frame

• a ‘-’ for the lines before the last list

• a ‘+’ for the lines after the last list

With a class, method, function, pyc-file, code or string argument disassemble that.

Examples:

disassemble # Possibly lots of stuff dissassembled
disassemble . # Disassemble lines starting at current stopping point.
disassemble + # Same as above
disassemble os.path # Disassemble all of os.path
disassemble os.path.normcase() # Disaassemble just method os.path.normcase
disassemble 3 # Disassemble starting from line 3
disassemble 3, 10 # Disassemble lines 3 to 10
disassemble *0, *10 # Disassemble offset 0-10
disassemble myprog.pyc # Disassemble file myprog.pyc

See also:

help syntax arange for the specification of a address range deparse, list, info pc

5.2.3 Display (set display expression)

display [format] expression

Print value of expression expression each time the program stops. format may be used before expression and may be
one of /c for char, /x for hex, /o for octal, /f for float or /s for string.

For now, display expressions are only evaluated when in the same code as the frame that was in effect when the display
expression was set. This is a departure from gdb and we may allow for more flexibility in the future to specify whether
this should be the case or not.

With no argument, evaluate and display all currently requested auto-display expressions.

See also:

ref:undisplay <undisplay> to cancel display requests previously made.

5.2.4 Eval (evaluate Python code)

eval python-statement

Run python-statement in the context of the current frame.

5.2. Data 25

trepan Documentation, Release 1.0

If no string is given, we run the string from the current source code about to be run. If the command ends ? (via an
alias) and no string is given, the following translations occur:

assert = <expr> => <expr>
{if|elif} <expr> : => <expr>
while <expr> : => <expr>
return <expr> => <expr>
for <var> in <expr> : => <expr>
<var> = <expr> => <expr>

The above is done via regular expression matching. No fancy parsing is done, say, to look to see if expr is split across
a line or whether var an assignment might have multiple variables on the left-hand side.

Examples:

eval 1+2 # 3
eval # Run current source-code line
eval? # but strips off leading 'if', 'while', ..

from command

See also:

set autoeval, pr, pp and examine.

5.2.5 Examine

examine expr1 [expr2 . . .]

Examine value, type and object attributes of an expression.

In contrast to normal Python expressions, expressions should not have blanks which would cause shlex to see them as
different tokens.

Examples:

examine x+1 # ok
examine x + 1 # not ok

See also:

pr, pp, and whatis.

5.2.6 Pdef

pdef obj

Print the definition header for a callable object obj. If the object is a class, print the constructor information.

See also:

pydocX, pp

26 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.2.7 Pp (pretty print expression)

pp expression

Pretty-print the value of the expression.

Simple arrays are shown columnized horizontally. Other values are printed via pprint.pformat().

See also:

pr and examine for commands which do more in the way of formatting.

5.2.8 Pr (print expression)

pr expression

Print the value of the expression. Variables accessible are those of the environment of the selected stack frame, plus
globals.

The expression may be preceded with /fmt where fmt is one of the format letters ‘c’, ‘x’, ‘o’, ‘f’, or ‘s’ for chr, hex,
oct, float or str respectively.

If the length output string large, the first part of the value is shown and . . . indicates it has been truncated.

See also:

pp and examine for commands which do more in the way of formatting; pydocx

5.2.9 Pydocx (show pydoc)

pydocx name . . .

Show pydoc documentation on something. name may be the name of a Python keyword, topic, function, module, or
package, or a dotted reference to a class or function within a module or module in a package. If name contains a ‘/’,
it is used as the path to a Python source file to document. If name is keywords, topics, or modules, a listing of these
things is displayed.

See also:

whatis, undisplay

5.2.10 Undisplay (cancel a display expression)

undisplay display-number. . .

Cancel some expressions to be displayed when program stops. Arguments are the code numbers of the expressions to
stop displaying.

No argument cancels all automatic-display expressions and is the same as delete display.

See also:

info display to see current list of code numbers. whatis

5.2. Data 27

trepan Documentation, Release 1.0

5.2.11 Whatis

whatis arg

Prints the information argument which can be a Python expression.

When possible, we give information about:

• type of argument

• doc string for the argument (if a module, class, or function)

• comments around the definition of the argument (module)

• the module it was defined in

• where the argument was defined

We get this most of this information via the inspect module.

See also:

pydocx, the inspect module.

5.3 Files

Specifying and examining files.

5.3.1 Edit

edit position

Edit specified file or module. With no argument, edits file containing most recent line listed.

See also:

list

5.3.2 List (show me the code!)

list [range]

list + | - | .

List source code. See help syntax range for what can go in a list range.

Without arguments, print lines centered around the current line. If num is given that number of lines is shown.

Without arguments, print lines starting from where the last list left off since the last entry to the debugger. We start off
at the location indicated by the current stack.

in addition you can also use:

• a ‘.’ for the location of the current frame

• a ‘-’ for the lines before the last list

• a ‘+’ for the lines after the last list

28 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

Examples:

list 5 # List starting from line 5 of current file
list 5 , # Same as above.
list , 5 # list listsize lines before and up to 5
list foo.py:5 # List starting from line 5 of file foo.py
list foo() # List starting from function foo
list os.path:5 # List starting from line 5 of module os.path
list os.path:5, 6 # list lines 5 and 6 of os.path
list os.path:5, +1 # Same as above. +1 is an offset
list os.path:5, 1 # Same as above, since 1 < 5.
list os.path:5, +6 # list lines 5-11
list os.path.join() # List lines centered around the os.join.path function.
list . # List lines centered from where we currently are stopped
list - # List lines previous to those just shown
list # List continuing from where we last left off

See also:

set listsize, or show listsize to see or set the number of source-code lines to list. help syntax location for the specification
of a location and help syntax range for the specification of a range.

5.4 Info

info [info-subcommand]

Get information on the program being debugged.

You can give unique prefix of the name of a subcommand to get information about just that subcommand.

Type info for a list of info subcommands and what they do. Type help info * for just a list of info subcommands.

5.4.1 Info Args

info args

Show parameters of the current stack frame.

See also:

info locals, info globals, info frame

5.4.2 Info Break

info breakpoints [bp-number. . .]

Show the status of specified breakpoints (or all user-settable breakpoints if no argument).

The Disp column contains one of keep, or del, to indicate the disposition of the breakpoint after it gets hit. del means
that the breakpoint will be deleted. The Enb column indicates if the breakpoint is enabled. The Where column
indicates the file/line number of the breakpoint.

Also shown are the number of times the breakpoint has been hit, when that count is at least one, and any conditions
the breakpoint has.

5.4. Info 29

trepan Documentation, Release 1.0

Example:

(trepan3k) info break
Num Type Disp Enb Where
1 breakpoint del n at /tmp/fib.py:9
2 breakpoint keep y at /tmp/fib.py:4

breakpoint already hit 1 time
3 breakpoint keep y at /tmp/fib.py:6

stop only if x > 0

See also:

break, delete enable, Disable (disable breakpoints), condition

5.4.3 Info Builtins

info builtins

Show the builtin-functions for the current stack frame.

info code [frame-number | code-object]

5.4.4 Info Code

Specific information includes:

• the number of arguments (not including * or ** args)

• the number of local variables

• maximum stack size used by the frame

• first line associated with the code

• constants used in the bytecode

• whether code is optimized

• Should a new local namespace be created for this code? (This is True for functions and False for modules and
exec code.)

• name with which this code object was defined

See also:

info frame, info frame, info locals,

5.4.5 Info Display

info display

Show the display expression evaluated when the program stops.

See also:

display, undisplay

30 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.4.6 Info Files

info files [filename [all | brkpts | lines | sha1 | size]]

Show information about the current file. If no filename is given and the program is running then the current file
associated with the current stack entry is used. Sub options which can be shown about a file are:

brkpts Line numbers where there are statement boundaries. These lines can be used in breakpoint com-
mands.

sha1 A SHA1 hash of the source text. This may be useful in comparing source code

size The number of lines in the file.

all All of the above information.

info frame [-v] [frame-number | frame-object]

5.4.7 Info Frame

Show the detailed information for frame-number or the current frame if frame-number is not specified. You can also
give a frame object instead of a frame number

Specific information includes:

• the frame number (if not an object)

• the source-code line number that this frame is stopped in

• the last instruction executed; -1 if the program are before the first instruction

• a function that tracing this frame or None

• Whether the frame is in restricted execution

• Exception type and value if there is one

If -v is given we show builtin and global names the frame sees.

See also:

info locals, info globals, info args

5.4.8 Info Globals

info globals [var1 . . .]

info globals *

With no arguments, show all of the global variables of the current stack frame. If a list of names is provide limit
display to just those variables.

If * is given, just show the variable names, not the values.

See also:

info locals, info args, info frame

5.4. Info 31

trepan Documentation, Release 1.0

5.4.9 Info Line

info line

Show line information for location location.

If no location is given, use the the current stopped line.

Examples

(trepan3k) info line
Line 3 of "/tmp/python3-trepan/test/example/multi-line.py"

starts at offset 0 of <module> and contains 2 instructions
There are multiple starting offsets this line. Other starting offsets: 4 of <module>

(trepan3k) info line 5
Line 5 of "/tmp/python3-trepan/test/example/multi-line.py"

starts at offset 16 of <module> and contains 7 instructions

See also:

info program, info frame and help syntax location.

5.4.10 Info Lines

info lines [-n function-or-module]

Show line - function/offset information. Use -n function-or-module to filter results.

Examples

(trepan3k) info lines
Line - (fn, start offset) table for test/example/gcd.py

10: <module> @0 21: check_args() @84 36: gcd() @30
11: <module> @4 22: check_args() @106 37: gcd() @50
13: <module> @12 23: check_args() @116 38: gcd() @54
14: check_args() @0 24: check_args() @122 40: <module> @28
16: check_args() @14 26: <module> @20 41: <module> @36
17: check_args() @22 30: gcd() @0 43: <module> @42
18: check_args() @36 31: gcd() @8 44: <module> @60
19: check_args() @38 34: gcd() @18 45: <module> @84
20: check_args() @70 35: gcd() @26

(trepan3k) info lines -n <module>
10: <module> @0 11: <module> @4 13: <module> @12
40: <module> @28 26: <module> @20 41: <module> @36
43: <module> @42 44: <module> @60 45: <module> @84

(trepan3k) info lines -n gcd
30: gcd() @0 31: gcd() @8 34: gcd() @18
35: gcd() @26 36: gcd() @30 37: gcd() @50
38: gcd() @54

See also:

info program, info program, info pc, info frame

32 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.4.11 Info Locals

info locals [var1 . . .]

info locals *

With no arguments, show all of the local variables of the current stack frame. If a list of names is provide limit display
to just those variables.

If * is given, just show the variable names, not the values.

See also:

info globals, info args, info frame

5.4.12 Info Macro

info macro
info macro *
info macro macro1 [macro2 ..]

In the first form a list of the existing macro names are shown in column format.

In the second form, all macro names and their definitions are shown.

In the last form the only definitions of the given macro names is shown.

See also:

show aliases

5.4.13 Info PC

info pc

List the current program counter or bytecode offset, and disassemble the instructions around that.

See also:

info line, info program

5.4.14 Info Program

info program

Execution status of the program. Listed are:

• Program name

• Instruction PC

• Reason the program is stopped.

See also:

info line, info args, info frame

5.4. Info 33

trepan Documentation, Release 1.0

5.4.15 Info Return

info return

Show the value that is to be returned from a function. This command is useful after a running a debugger finish
command or stepping just after a ‘return’ statement.

5.4.16 Info Signals

info signals [signal-name]

info signals *

Show information about how debugger treats signals to the program. Here are the boolean actions we can take:

• Stop: enter the debugger when the signal is sent to the debugged program

• Print: print that the signal was received

• Stack: show a call stack

• Pass: pass the signal onto the program

If signal-name is not given, we the above show information for all signals. If ‘*’ is given we just give a list of signals.

5.4.17 Info Source

info source

Information about the current Python file.

5.4.18 Info Threads

info threads [thread-name | thread-number] [terse | verbose]

List all currently-known thread name(s).

If no thread name is given, we list info for all threads. Unless a terse listing, for each thread we give:

• the class, thread name, and status as Class(Thread-n, status)

• the top-most call-stack information for that thread.

Generally the top-most calls into the debugger and dispatcher are omitted unless set dbg_trepan is True.

If ‘verbose’ appended to the end of the command, then the entire stack trace is given for each frame. If ‘terse’ is
appended we just list the thread name and thread id.

To get the full stack trace for a specific thread pass in the thread name.

5.5 Running

Running, restarting, or stopping the program.

When a program is stopped there are several possibilities for further program execution. You can:

• terminate the program inside the debugger

• restart the program

34 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

• continue its execution until it would normally terminate or until a breakpoint is hit

• step exection which is runs for a limited amount of code before stopping

5.5.1 Continue

continue [[file :] lineno | function]

Leave the debugger read-eval print loop and continue execution. Subsequent entry to the debugger however may occur
via breakpoints or explicit calls, or exceptions.

If a line position or function is given, a temporary breakpoint is set at that position before continuing.

Examples:

continue # Continue execution
continue 5 # Continue with a one-time breakpoint at line 5
continue basename # Go to os.path.basename if we have basename imported
continue /usr/lib/python2.7/posixpath.py:110 # Possibly the same as

the above using file
and line number

See also:

step jump, next, and finish provide other ways to progress execution.

5.5.2 Exit

exit [exitcode]

Hard exit of the debugged program.

The program being debugged is exited via sys.exit(). If a return code is given, that is the return code passed to sys.exit(),
the return code that will be passed back to the OS.

See also:

quit and kill

5.5.3 Finish (step out)

finish [level]

Continue execution until leaving the current function. When level is specified, that many frame levels need to be
popped. Note that yield and exceptions raised my reduce the number of stack frames. Also, if a thread is switched, we
stop ignoring levels.

See the break command if you want to stop at a particular point in a program.

See also:

step skip, jump, continue, and finish provide other ways to progress

5.5. Running 35

trepan Documentation, Release 1.0

5.5.4 Jump

jump lineno

Set the next line that will be executed. The line must be within the stopped or bottom-most execution frame.

See also:

step skip, next, continue, and finish provide other ways to progress

5.5.5 Kill

kill [signal-number] [unconditional]

Send this process a POSIX signal (‘9’ for ‘SIGKILL’ or ‘kill -SIGKILL’)

9 is a non-maskable interrupt that terminates the program. If program is threaded it may be expedient to use this
command to terminate the program.

However other signals, such as those that allow for the debugged to handle them can be sent.

Giving a negative number is the same as using its positive value.

Examples:

kill # non-interuptable, nonmaskable kill
kill 9 # same as above
kill -9 # same as above
kill! # same as above, but no confirmation
kill unconditional # same as above
kill 15 # nicer, maskable TERM signal
kill! 15 # same as above, but no confirmation

See also:

quit for less a forceful termination command; exit for another way to force termination. run and restart are ways to
restart the debugged program.

5.5.6 Next (step over)

next [+ | -] [count]

Step one statement ignoring steps into function calls at this level.

With an integer argument, perform next that many times. However if an exception occurs at this level, or we return,
yield or the thread changes, we stop regardless of count.

A suffix of + on the command or an alias to the command forces to move to another line, while a suffix of - does the
opposite and disables the requiring a move to a new line. If no suffix is given, the debugger setting ‘different-line’
determines this behavior.

See also:

skip, jump, continue, and finish provide other ways to progress execution.

36 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.5.7 Quit

quit [unconditionally]

Gently terminate the debugged program.

The program being debugged is aborted via a DebuggerQuit exception.

When the debugger from the outside (e.g. via a trepan command), the debugged program is contained inside a try
block which handles the DebuggerQuit exception. However if you called the debugger was started in the middle of
a program, there might not be such an exception handler; the debugged program still terminates but generally with a
traceback showing that exception.

If the debugged program is threaded, we raise an exception in each of the threads ending with our own. However this
might not quit the program.

See also:

kill or kill for more forceful termination commands. run and restart are other ways to restart the debugged program.

5.5.8 Run

run

Soft restart debugger and program via a DebuggerRestart exception.

See also:

restart for another way to restart the debugged program. quit, or kill for termination commands.

5.5.9 Restart

restart

Restart debugger and program via an exec() call. All state is lost, and new copy of the debugger is used.

See also:

run for another way to restart the debugged program. quit, or kill for termination commands.

5.5.10 Skip

skip [count]

Set the next line that will be executed. The line must be within the stopped or bottom-most execution frame.

See also:

step jump, continue, and finish provide other ways to progress execution.

5.5.11 Step (step into)

step [+ | - | < | > | !] [event. . .] [count]

Execute the current line, stopping at the next event.

With an integer argument, step that many times.

5.5. Running 37

trepan Documentation, Release 1.0

event is list of an event name which is one of: call, return, line, exception c-call, c-return or c-exception. If specified,
only those stepping events will be considered. If no list of event names is given, then any event triggers a stop when
the count is 0.

There is however another way to specify a single event, by suffixing one of the symbols <, >, or ! after the command
or on an alias of that. A suffix of + on a command or an alias forces a move to another line, while a suffix of - disables
this requirement. A suffix of > will continue until the next call. (finish will run run until the return for that call.)

If no suffix is given, the debugger setting different-line determines this behavior.

Examples:

step # step 1 event, *any* event
step 1 # same as above
step 5/5+0 # same as above
step line # step only line events
step call # step only call events
step> # same as above
step call line # Step line *and* call events

See also:

next command. skip, jump (there’s no hop yet), continue, and finish provide other ways to progress execution.

set [set-subcommand]

Modifies parts of the debugger environment.

You can give unique prefix of the name of a subcommand to get information about just that subcommand.

Type set for a list of set subcommands and what they do. Type help set * for just the list of set subcommands.

All of the “set” commands have a corresponding show command.

5.6 Set

Modifies parts of the debugger environment. You can see these environment settings with the show command.

5.6.1 Set Auto Eval

set autoeval [on | off]

Evaluate unrecognized debugger commands.

Often inside the debugger, one would like to be able to run arbitrary Python commands without having to preface
Python expressions with print or eval. Setting autoeval on will cause unrecognized debugger commands to be
eval’d as a Python expression.

Note that if this is set, on error the message shown on type a bad debugger command changes from:

Undefined command: "fdafds". Try "help".

to something more Python-eval-specific such as:

NameError: name 'fdafds' is not defined

38 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

One other thing that trips people up is when setting autoeval is that there are some short debugger commands that
sometimes one wants to use as a variable, such as in an assignment statement. For example:

s = 5

which produces when autoeval is on:

Command 'step' can take at most 1 argument(s); got 2.

because by default, s is an alias for the debugger step command. It is possible to remove that alias if this causes
constant problem.

See also:

show autoeval

5.6.2 Set Auto List

set autolist [on | off]

Run the list command every time you stop in the debugger.

With this, you will get output like:

-> 1 from subprocess import Popen, PIPE
(trepan2) next
(/users/fbicknel/Projects/disk_setup/sqlplus.py:2): <module>

** 2 import os
1 from subprocess import Popen, PIPE
2 -> import os
3 import re
4
5 class SqlPlusExecutor(object):
6 def __init__(self, connection_string='/ as sysdba', sid=None):
7 self.__connection_string = connection_string
8 self.session = None
9 self.stdout = None

10 self.stderr = None
(trepan2) next
(/users/fbicknel/Projects/disk_setup/sqlplus.py:3): <module>

** 3 import re
1 from subprocess import Popen, PIPE
2 import os
3 -> import re
4
5 class SqlPlusExecutor(object):
6 def __init__(self, connection_string='/ as sysdba', sid=None):
7 self.__connection_string = connection_string
8 self.session = None
9 self.stdout = None

10 self.stderr = None
(trepan2)

You may also want to put this this in your debugger startup file. See Startup Profile

See also:

show autolist

5.6. Set 39

trepan Documentation, Release 1.0

5.6.3 Set Autopython

set autopython [on | off]

Go into a Python shell on debugger entry.

See also:

python

5.6.4 Set Basename

set basename [on | off]

Set short filenames in debugger output.

Setting this causes the debugger output to give just the basename for filenames. This is useful in debugger testing or
possibly showing examples where you don’t want to hide specific filesystem and installation information.

See also:

show basename

5.6.5 Set Cmdtrace

set cmdtrace [on | off]

Set echoing lines read from debugger command files

See also:

show cmdtrace

5.6.6 Set Confirm

set confirm [on | off]

Set confirmation of potentially dangerous operations.

Some operations are a bit disruptive like terminating the program. To guard against running this accidentally, by default
we ask for confirmation. Commands can also be exempted from confirmation by suffixing them with an exclamation
mark (!).

See also:

show confirm

5.6.7 Set Dbg_trepan

set dbg_trepan [on | off]

Set the ability to debug the debugger.

Setting this allows visibility and access to some of the debugger’s internals. Specifically variable “frame” contains the
current frame and variable “debugger” contains the top-level debugger object.

See also:

show dbg_trepan

40 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.6.8 Set Different

set different [on | off]

Set consecutive stops must be on different file/line positions.

By default, the debugger traces all events possible including line, exceptions, call and return events. Just this alone
may mean that for any given source line several consecutive stops at a given line may occur. Independent of this,
Python allows one to put several commands in a single source line of code. When a programmer does this, it might be
because the programmer thinks of the line as one unit.

One of the challenges of debugging is getting the granualarity of stepping comfortable. Because of the above, stepping
all events can often be too fine-grained and annoying. By setting different on you can set a more coarse-level of
stepping which often still is small enough that you won’t miss anything important.

Note that the step and next debugger commands have ‘+’ and ‘-’ suffixes if you wan to override this setting on a
per-command basis.

See also:

set trace to change what events you want to filter. show trace.

5.6.9 Set Events

set events [event . . .]

Sets the events that the debugger will stop on. Event names are:

• c_call
• c_exception
• c_return
• call
• exception
• line
• return

all can be used as an abbreviation for listing all event names.

Changing trace event filters works independently of turning on or off tracing-event printing.

Examples:

set events line # Set trace filter for line events only.
set events call return # Trace calls and returns only
set events all # Set trace filter to all events.

See also:

set trace, show trace, and show events

5.6.10 Set Flush

set flush [on | off]

Set flushing output after each write

See also:

show flush

5.6. Set 41

trepan Documentation, Release 1.0

5.6.11 Set Highlight

set highlight [reset] {plain | light | dark | off}

Set whether we use terminal highlighting for ANSI 8-color terminals. Permissible values are:

plain no terminal highlighting

off same as plain

light terminal background is light (the default)

dark terminal background is dark

If the first argument is reset, we clear any existing color formatting and recolor all source code output.

A related setting is style which sets the Pygments style for terminal that support, 256 colors. But even here, it is useful
to set the highlight to tell the debugger for bold and emphasized text what values to use.

Examples:

set highlight off # no highlight
set highlight plain # same as above
set highlight # same as above
set highlight dark # terminal has dark background
set highlight light # terminal has light background
set highlight reset light # clear source-code cache and

set for light background
set highlight reset # clear source-code cache

See also:

show highlight and set style

5.6.12 Set Listsize

set listsize number-of-lines

Set the number lines printed in a list command by default

See also:

show listsize

5.6.13 Set Maxstring

set maxstring number

Set the number of characters allowed in showing string values

See also:

show maxstring

42 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.6.14 Set Substition Pattern

set patsub from-re replace-string

Add a substitution pattern rule replacing patsub with replace-string anywhere it is found in source file names. If a
substitution rule was previously set for from-re, the old rule is replaced by the new one.

In the following example, suppose in a docker container /mnt/project is the mount-point for /home/rocky/project. You
are running the code from the docker container, but debugging this from outside of that.

Example:

set patsub ^/mmt/project /home/rocky/project

See also:

set substitute

5.6.15 Set Skip

Set stopping before def or class (function or class) statements.

Classes may have many methods and stand-alone programs may have many functions. Often there isn’t much value
to stopping before defining a new function or class into Python’s symbol table. (More to the point, it can be an
annoyance.) However if you do want this, for example perhaps you want to debug methods is over-writing one
another, then set this off.

See also:

show skip

5.6.16 Set Style

set style [pygments-style]

Set the pygments style in to use in formatting text for a 256-color terminal. Note: if your terminal doesn’t support 256
colors, you may be better off using –highlight=plain or –highlight=dark instead. To turn off styles use set style none.

To list the available pygments styles inside the debugger, omit the style name.

Examples:

set style # give a list of the style names
set style colorful # Pygments 'colorful' style
set style fdasfda # Probably display available styles
set style none # Turn off style, still use highlight though

See also:

show style and set highlight

5.6. Set 43

trepan Documentation, Release 1.0

5.6.17 Set Substitute

set substitute from-name to-path

Add a substitution rule replacing from-name into to-path in source file names. If a substitution rule was previously set
for from-name, the old rule is replaced by the new one.

Spaces in “filenames” like <frozen importlib._bootstrap> messes up our normal shell tokenization, so we have added
a hack to ignore <frozen .. >.

So, for frozen files like <frozen importlib._bootstrap>, use importlib._bootstrap

Examples:

set substitute importlib._bootstrap /usr/lib/python3.4/importlib/_bootstrap.py
set substitute ./gcd.py /tmp/gcd.py

See also:

set patsub

5.6.18 Set Tempdir

set tempdir directory

This is sometimes useful remote debugging where you might set up a common shared location available between the
debugged process and the front end client.

Example:

set tempdir /code/tmp # /code is a shared directory

See also:

show tempdir

5.6.19 Set Trace

set trace [on | off]

Set event tracing.

See also:

set events, set trace, and show trace

5.6.20 Set Width

set width number

Set the number of characters the debugger thinks are in a line.

See also:

show width

44 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.7 Stack

Examining the call stack.

The call stack is made up of stack frames. The debugger assigns numbers to stack frames counting from zero for the
innermost (currently executing) frame.

At any time the debugger identifies one frame as the “selected” frame. Variable lookups are done with respect to the
selected frame. When the program being debugged stops, the debugger selects the innermost frame. The commands
below can be used to select other frames by number or address.

5.7.1 Backtrace (show call-stack)

backtrace [options] [count]

Print backtrace of all stack frames, or innermost count frames.

With a negative argument, print outermost -count frames.

An arrow indicates the ‘current frame’. The current frame determines the context used for many debugger commands
such as expression evaluation or source-line listing.

opts are:

-d | –deparse - show deparsed call position -s | –source - show source code line -f | –full - locals of each
frame -h | –help - give this help

Examples:

backtrace # Print a full stack trace
backtrace 2 # Print only the top two entries
backtrace -1 # Print a stack trace except the initial (least recent) call.
backtrace -s # show source lines in listing
backtrace -d # show deparsed source lines in listing
backtrace -f # show with locals
backtrace -df # show with deparsed calls and locals
backtrace --deparse --full # same as above

See also:

frame, info locals, deparse and list.

5.7.2 Frame (absolute frame positioning)

frame [thread-Name*|*thread-number] [frame-number]

Change the current frame to frame frame-number if specified, or the current frame, 0, if no frame number specified.

If a thread name or thread number is given, change the current frame to a frame in that thread. Dot (.) can be used to
indicate the name of the current frame the debugger is stopped in.

A negative number indicates the position from the other or least-recently-entered end. So frame -1 moves to the oldest
frame, and frame 0 moves to the newest frame. Any variable or expression that evaluates to a number can be used
as a position, however due to parsing limitations, the position expression has to be seen as a single blank-delimited
parameter. That is, the expression (5*3)-1 is okay while (5 * 3) - 1) isn’t.

5.7. Stack 45

trepan Documentation, Release 1.0

Examples:

frame # Set current frame at the current stopping point
frame 0 # Same as above
frame 5-5 # Same as above. Note: no spaces allowed in expression 5-5
frame . # Same as above. "current thread" is explicit.
frame . 0 # Same as above.
frame 1 # Move to frame 1. Same as: frame 0; up
frame -1 # The least-recent frame
frame MainThread 0 # Switch to frame 0 of thread MainThread
frame MainThread # Same as above
frame -2434343 0 # Use a thread number instead of name

See also:

down, up, backtrace, and info threads.

5.7.3 Up (relative frame motion towards a less-recent frame)

up [count]

Move the current frame up in the stack trace (to an older frame). 0 is the most recent frame. If no count is given, move
up 1.

See also:

down and frame.

5.7.4 Down (relative frame motion towards a more-recent frame)

down [count]

Move the current frame down in the stack trace (to a newer frame). 0 is the most recent frame. If no count is given,
move down 1.

See also:

up and frame.

show [subcommand]

A command for showing things about the debugger. You can give unique prefix of the name of a subcommand to get
information about just that subcommand.

Type show for a list of show subcommands and what they do. Type help show * for just a list of show subcommands.
Many of the “show” commands have a corresponding set command.

5.8 Show

5.8.1 Show Aliases (show debugger command aliases)

show aliases [alias . . . | *]

Show command aliases. If parameters are given a list of all aliases and the command they run are printed. Alternatively
one can list specific alias names for the commands those specific aliases are attached to. If instead of an alias “*”
appears anywhere as an alias then just a list of aliases is printed, not what commands they are attached to.

46 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

See also:

alias

5.8.2 Show Args (show arguments when program is started)

show args

Show the argument list to give debugged program when it is started

5.8.3 Show Autoeval

show autoeval

Show Python evaluation of unrecognized debugger commands.

See also:

set autoeval

5.8.4 Show Autolist

show autolist

Run a debugger ref:list <list> command automatically on debugger entry.

See also:

set autolist

5.8.5 Show Autopython

show autopython

Show whether we go into a Python shell when automatically when the debugger is entered.

See also:

set autopython

5.8.6 Show Basename

show basename

Show Python evaluation of unrecognized debugger commands.

See also:

set basename

5.8. Show 47

trepan Documentation, Release 1.0

5.8.7 Show Cmdtrace

show cmdtrace

Show debugger commands before running them

See also:

set cmdtrace

5.8.8 Show Confirm

show confirm

Show confirmation of potentially dangerous operations

See also:

show confirm

5.8.9 Show Dbg_trepan

Show debugging the debugger

See also:

set dbg_trepan

5.8.10 Show Different

Show consecutive stops on different file/line positions

See also:

set different

5.8.11 Show Events

show events

Show the kinds of events the debugger will stop on.

See also:

set events

5.8.12 Show Highlight

show highlight

Show whether we use terminal highlighting.

See also:

set highlight

48 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.8.13 Show Listsize

show listsize

Show the number lines printed in a list command by default

See also:

set listsize

5.8.14 Show Maxstring

show maxstring

Show maximum string length to use in string-oriented output

See also:

set maxstring

5.8.15 Show Skip

show skip

Show whether debugger steps over lines which define functions and classes

See also:

set skip

5.8.16 Show Style

show style pygments-style

Show the pygments style used in formatting 256-color terminal text.

See also:

set style and show highlight

5.8.17 Show Tempdir

show tempdir

Show directory where temporary files will be created.

See also:

set tempdir

5.8.18 Show Trace

show trace

Show event tracing.

See also:

set trace, show events

5.8. Show 49

trepan Documentation, Release 1.0

5.8.19 Show Width

show width

Show the number of characters the debugger thinks are in a line.

See also:

set width

5.9 Support

5.9.1 Alias (add debugger command alias)

alias alias-name debugger-command

Add alias alias-name for a debugger command debugger-comand.

Add an alias when you want to use a command abbreviation for a command that would otherwise be ambigous. For
example, by default we make s be an alias of step to force it to be used. Without the alias, s might be step, show,
or set among others

Example:

alias cat list # "cat myprog.py" is the same as "list myprog.py"
alias s step # "s" is now an alias for "step".

The above example is done by default.

See also:

unalias and show alias.

5.9.2 BPython (go into a bpython shell)

bpython [-d]

Note: this command is available only if bpython is installed

Run Python as a command subshell. The sys.ps1 prompt will be set to trepan2 >>>.

If -d is passed, you can access debugger state via local variable debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also:

python, and ipython.

50 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

5.9.3 Debug (recursively debug an expression)

debug python-expression

Enter a nested debugger that steps through the python-expression argument which is an arbitrary expression to be
executed the current environment.

5.9.4 Help (Won’t you please help me if you can)

help [command [subcommand]|*expression*]

Without argument, print the list of available debugger commands.

When an argument is given, it is first checked to see if it is command name.

If the argument is an expression or object name, you get the same help that you would get inside a Python shell running
the built-in help() command.

If the environment variable $PAGER is defined, the file is piped through that command. You’ll notice this only for
long help output.

Some commands like info, set, and show can accept an additional subcommand to give help just about that particular
subcommand. For example help info line give help about the info line command.

See also:

examine and whatis.

5.9.5 IPython (go into an IPython shell)

ipython [-d]

Note: this command is available only if ipython is installed

Run Python as a command subshell. The sys.ps1 prompt will be set to trepan2 >>>.

If -d is passed, you can access debugger state via local variable debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also:

python, and bpython.

5.9.6 Macro (add a debugger macro)

macro macro-name lambda-object

Define macro-name as a debugger macro. Debugger macros get a list of arguments which you supply without paren-
thesis or commas. See below for an example.

The macro (really a Python lambda) should return either a String or an List of Strings. The string in both cases is a
debugger command. Each string gets tokenized by a simple split() . Note that macro processing is done right after
splitting on ;;. As a result, if the macro returns a string containing ;; this will not be interpreted as separating
debugger commands.

5.9. Support 51

trepan Documentation, Release 1.0

If a list of strings is returned, then the first string is shifted from the list and executed. The remaining strings are
pushed onto the command queue. In contrast to the first string, subsequent strings can contain other macros. ;; in
those strings will be split into separate commands.

Here is an trivial example. The below creates a macro called l= which is the same thing as list .:

macro l= lambda: 'list .'

A simple text to text substitution of one command was all that was needed here. But usually you will want to run
several commands. So those have to be wrapped up into a list.

The below creates a macro called fin+ which issues two commands finish followed by step:

macro fin+ lambda: ['finish','step']

If you wanted to parameterize the argument of the finish command you could do that this way:

macro fin+ lambda levels: ['finish %s' % levels ,'step']

Invoking with:

fin+ 3

would expand to: ['finish 3', 'step']

If you were to add another parameter for step, the note that the invocation might be:

fin+ 3 2

rather than fin+(3,2) or fin+ 3, 2.

See also:

alias, and info macro.

5.9.7 Python (go into a Python shell)

python [-d]

Run Python as a command subshell. The sys.ps1 prompt will be set to trepan2 >>>.

If -d is passed, you can access debugger state via local variable debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also:

ipython, and bpython.

5.9.8 Source (Read and run debugger commands from a file)

source [-v][-Y**|-N**][-c] file

Read debugger commands from a file named file. Optional -v switch (before the filename) causes each command in
file to be echoed as it is executed. Option -Y sets the default value in any confirmation command to be “yes” and -N
sets the default value to “no”.

52 Chapter 5. Trepan Command Reference

trepan Documentation, Release 1.0

Note that the command startup file .trepanc is read automatically via a source command the debugger is started.

An error in any command terminates execution of the command file unless option -c is given.

5.9.9 Unalias (remove debugger command alias)

unalias alias-name

Remove alias alias-name.

See also:

alias.

5.9. Support 53

trepan Documentation, Release 1.0

54 Chapter 5. Trepan Command Reference

CHAPTER 6

Manual Pages

6.1 trepan2 - Python2 debugger

6.1.1 Synopsis

trepan2 [debugger-options] [–] [python-script [script-options . . .]]

6.1.2 Description

Run the Python2 trepan debugger from the outset.

6.1.3 Options

-h, –help Show the help message and exit

-x, –trace Show lines before executing them.

-F, –fntrace Show functions before executing them.

–basename Filenames strip off basename, (e.g. for regression tests)

–client Connect to an existing debugger process started with the –server option

-x FILE, –command= FILE Execute commands from FILE

–cd= DIR Change current directory to DIR

-confirm Confirm potentially dangerous operations

–dbg_trepan Debug the debugger

–different Consecutive stops should have different positions

-e EXECUTE-CMDS, –exec= EXECUTE-CMDS list of debugger commands to execute. Separate the
commands with ;;

55

trepan Documentation, Release 1.0

–highlight={light|dark|plain} Use syntax and terminal highlight output. “plain” is no highlight

–private Don’t register this as a global debugger

–post-mortem Enter debugger on an uncaught (fatal) exception

-n, –nx Don’t execute commands found in any initialization files

-o FILE, –output= FILE Write debugger’s output (stdout) to FILE

-p PORT,–port= PORT Use TCP port number NUMBER for out-of-process connections.

–server Out-of-process server connection mode

–sigcheck Set to watch for signal handler changes

-t TARGET, –target= TARGET Specify a target to connect to. Arguments should be of form, proto-
col:address

–from_ipython Called from inside ipython

– Use this to separate debugger options from any options your Python script has

6.1.4 See also

trepan3k (1), trepan2c (Python2 client to connect to remote trepan session) (1), trepan3kc

Full Documentation is available at http://python2-trepan.readthedocs.org

6.2 trepan2c (Python2 client to connect to remote trepan session)

6.2.1 Synopsis

trepan2c [debugger-options] [–] [python-script [script-options . . .]]

6.2.2 Description

Run the Python2 trepan debugger client to connect to an existing out-of-process Python trepan session

6.2.3 Options

-h, –help Show the help message and exit

-x, –trace Show lines before executing them.

-H IP-OR-HOST, –host= IP-OR-HOST connect to IP or HOST

-P NUMBER, –port= *NUMBER Use TCP port number NUMBER for out-of-process connections.

–pid=*NUMBER* Use PID to get FIFO names for out-of-process connections.

6.2.4 See also

trepan3k (1), trepan2c (Python2 client to connect to remote trepan session) (1), trepan3kc

Full Documentation is available at http://python2-trepan.readthedocs.org

56 Chapter 6. Manual Pages

http://python2-trepan.readthedocs.org
http://python2-trepan.readthedocs.org

CHAPTER 7

Indices and tables

• genindex

• search

57

trepan Documentation, Release 1.0

58 Chapter 7. Indices and tables

Index

A
alias, 50

B
backtrace, 45
bpython, 50
break, 21

C
clear, 22
condition, 22
continue, 35

D
debug, 50
delete, 23
deparse, 24
disable, 23
disassemble, 24
display, 25
down, 46

E
edit, 28
enable:, 23
eval, 25
examine, 26
exit, 35

F
finish, 35
frame, 45

H
help, 51

I
info

args, 29

break, 29
builtins, 30
code, 30
display, 30
files, 30
frame, 31
globals, 31
line, 31
lines, 32
locals, 32
macro, 33
pc, 33
program, 33
return, 33
signals, 34
source, 34
threads, 34

ipython, 51

J
jump, 35

K
kill, 36

L
list, 28

M
macro, 51

N
next, 36

P
pdef, 26
pp, 26
pr, 27
pydocx, 27
python, 52

59

trepan Documentation, Release 1.0

Q
quit, 36

R
restart, 37
run, 37

S
set

autoeval, 38
autolist, 39
autopython, 39
basename, 40
cmdtrace, 40
confirm, 40
dbg_trepan, 40
different, 40
events, 41
flush, 41
highlight, 41
listsize, 42
maxstring, 42
patsub, 42
skip, 43
style, 43
substitute, 43
tempdir, 44
trace, 44
width, 44

show
aliases, 46
args, 47
autoeval, 47
autolist, 47
autopython, 47
basename, 47
cmdtrace, 47
confirm, 48
dbg_trepan, 48
different, 48
events, 48
highlight, 48
listsize, 48
maxstring, 49
skip, 49
style, 49
tempdir, 49
trace, 49
width, 49

skip, 37
source, 52
step, 37

T
tbreak, 23

U
unalias, 53
undisplay, 27
up, 46

W
whatis, 27

60 Index

	Features
	Exact location information
	Debugging Python bytecode (no source available)
	Source-code Syntax Colorization
	Command Completion
	Terminal Handling
	Smart Eval
	More Stepping Control
	Event Tracing of Calls and Returns
	Debugger Macros via Python Lambda expressions
	Byte-code Instruction Introspection
	Debugger Command Arguments can be Variables and Expressions
	Out-of-Process Debugging
	Egg, Wheel, and Tarballs
	Modularity
	Documentation

	How to install
	Using pip
	Using easy_install

	Entering the Trepan Debugger
	Invoking the Debugger Initially
	Calling the debugger from IPython
	Calling the debugger from an Interactive Python Shell
	Calling the debugger from your program
	Calling the debugger from pytest
	Set up an exception handler to enter the debugger on a signal
	Set up an exception handler allow remote connections
	Startup Profile

	Command Syntax
	Syntax for Address Ranges
	Debugger Command Syntax
	Command examples
	Syntax for Indicating a Filename
	Syntax for List Ranges
	Command suffixes which have special meaning

	Trepan Command Reference
	Breakpoints
	Data
	Files
	Info
	Running
	Set
	Stack
	Show
	Support

	Manual Pages
	trepan2 - Python2 debugger
	trepan2c (Python2 client to connect to remote trepan session)

	Indices and tables
	Index

